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The mechanical properties of a silica particle-filled epoxy resin composite system have 
been investigated in air as a function of volume fraction of particles for volume fractions 
ranging from 0 to 0.52. The Young's modulus and the compressive yield stress both 
increase as the volume fraction of silica particles is increased and various models of 
particle strengthening have been used to explain this behaviour. Slow crack growth in the 
various particulate composites has been studied using a fracture mechanics approach. The 
variation of crack velocity (V) with stress intensity factor (K~) has been measured for 
each of the compositions investigated. In each case, a unique relationship between V and 
K~ has been found with K~ increasing with volume fraction of particles at a given value of 
V. The failure mechanisms and the variation of other fracture mechanics parameters, for 
example, crack opening displacement and plastic zone size with increasing particle volume 
fraction have been discussed. 

1. I n t r o d u c t i o n  
In the previous paper of this series [1] slow crack 
growth in an epoxy resin containing about 42% by 
volume of irregularly shaped silica particles was 
examined in detail. The variation of crack velocity 
(V) with stress intensity factor (KI) was measured 
using the double torsion (DT) test [2]. A relation- 
ship between V and KI was evaluated using a load 
relaxation technique that did not require direct 
observation of the moving crack. It was found that 
at a given temperature and in a given environment 
V was a unique function of Ki. At a crack velocity 
greater than 10 -s msec -1 the crack was found to 
propagate principally through the silica particles 
and matrix, whereas at velocities below this value 
the crack tended to go around the particles and 
fracture occurred by matrix cracking and particle 
pull-out. 

In this paper, V(K) curves have been construc- 
ted for other volume fractions of  silica particles. 
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The Young's modulus of each particulate com- 
posite has been measured as a function of strain- 
rate; this has enabled us to look at the variation 
of stress intensity factor (KI) and the strain 
energy release rate (GI), as a function of particle 
volume fraction, for a given crack velocity. The 
composites were found to yield and flow in 

uniaxial compressive loading and the compressive 
stress-strain relationships have been determined 
as a function of the volume fraction of silica 
particles. This has enabled other fracture mech- 
anics parameters such as crack opening displace- 
ment and plastic zone size for different amounts 
of silica particles to be determined. 

2. Experimental 
2.1. Materials and test conditions 
A series of epoxy resin composites containing up 
to 52 vol % silica particles were studied. They were 
supplied by Ciba-Geigy (IYK) Ltd, (Duxford) in 
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TABLE I Volume fraction Vp of silica particles and 
interparticle spacing d in the composite 

x 

0 50 100 150 200 250 300 

Vp 0 0.15 0.26 0.35 0.42 0.47 0.52 
d(#m) ~ 262 131 87 63 52 46 

x is the number of parts by weight of silica in the resin. 
The specific gravity of the resin has been taken as 1.23 
and that of the silica as 2.65 [1].  d has been calculated 
from Equation 9. 

the form of cast plates approximately 6 mm thick. 
The resin (CT200), hardener (HT901) and silica 
flour (Z300) have been described in a previous 
publication [1 ]. The ratio of resin :hardener : filler 
was 100:30 : x parts by weight where x varied in 
increments of 50 from 0 to 300. All the samples 
had been cured at 135~ for 16h. The compo- 
sition of each composite is given in Table I. Optical 
micrographs of the microstructures of some of the 
composites are shown in Fig. 1. The  irregular 
shape and size variation of  the silica particles can 
be seen. The appearance of the micrographs are 
consistent with a sieve analysis of the particles [ 1 ] 

which showed that over 50% of the particles were 
in the size range of 64 to 74#m. 

All the mechanical testing was carried out at 
20 + 2 ~ C in air at r.h. 60 -+ 10%. 

2 .2 .  Young 's  modu lus  de t e rmina t ions  
The Young's modulus, E, of each composite was 
determined as a function of cross-head speed using 
a three-point bend test performed in an Instron 
mechanical testing machine. The relationship 
between the applied load, P, and the displacement 
at the centre of the specimen, y,  is given by 

4Ebh 3 
P -  L ~  y (l)  

for specimens of rectangular cross-section (of 
thickness h and breadth b). L is the distance be- 
tween the supports. The Young's modulus, E, was 
determined from the slope of a plot of P against y 
and the specimen dimensions. The plot was linear 
over the range of strain investigated (up to 0.005). 
An average strain-rate, ~, in the specimen was 
estimated from the cross-head speed and specimen 
dimensions. It was taken as the strain-rate at a 

Figure 1 Optical micrographs of polished sections of samples of the composite with different volume fractions of 
particles. (a) 0.26 (b) 0.35 (c) 0.42 (d) 0.47. 
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point half-way between the neutral axis and the 
specimen surface. 

2.3. Measurement of  stress--strain curve 
Rectangular specimens 10mm long and with a 
5 mm square cross-section were machined from the 
cast plates. They were deformed in uniaxial com- 
pression between polished steel dies lubricated 
with a molybdenum disulphide based grease. A 
cross-head speed of 0.5 mm min -1 was used which 
is equivalent to an initial strain-rate of 8 x 10 -4 
sec -~ . The strain was calculated from the displace- 
ment of  the cross-head and the initial specimen 
heig~tt. The true stress on the specimen was 
calculated from the applied load, the initial cross- 
sectional area of the specimen and the strain by 
assuming that deformation took place at constant 
volume. This assumption will lead to a small error 
in true stress at the low strains used ( <  0.15). 

2.4. Double torsion tests 
Crack propagation in the various composites was 
investigated using the double torsion (DT) test 
which enabled a rapid determination of crack 
velocity (V) as a function of stress intensity factor 
(KI). 

2.4. 1. Specimen design and analysis 
The design and analysis of the DT specimen has 
been described in detail elsewhere [2]. K I is 
independent of  crack length and for an elastic 
material is given by 

[3(1 + v)l  an 
KI = PWm [ Wt3t" ] (2) 

where W/2 >> t. P is the applied load, Wm is the 
moment arm, v is Poissons ratio of the material, W 
is the bar width, t is the plate thickness and t n is 
the thickness of the plate in the plane of the crack. 
This analysis assumes that the specimen is made up 
of  two thin plates of width W/2 which are both 
strained in torsion. However, it has been pointed 
out to us [3] that only when (W/2)/t is greater 
than 10 can Equation 2 be used with any accuracy. 
When W/2 < 10 a systematic error is introduced 
and K1 is underestimated. Using an analysis of 
Timoshenko and Goodier [4] to describe the 
torsion of a beam Equation 1 is rewritten as 

[ l + v  ] t/~ 

TABLE I1 Variation of ka with (W/2)/t [4] and the 
error in K I introduced by having a double torsion speci- 
men of finite width 

(W/2)/t 
1 1.5 2.5 4 10 ~o 

k I 0.146 0.196 0.249 0.281 0.312 0.333 
Error (%) 53.9 30.4 15.7 8.9 3.4 0 

where kl is a constant which depends on the ratio 
(W/2)/t. The variation of kl with (W/2)/t is given 
in Table II (NB kl = 1/3 when (W/2)/t = co). For 
specimens used in the present investigation, (W/2)/t 
was of the order of 2.5 and KI has been calculated 
using Equation 3. 

2.4.2. Measurement of crack velocity 
For specimens which exhibited continuous crack 
growth, the crack velocity was estimated using the 
methods described earlier [1 ,2] .  Th~ey included 
direct crack observation, load relaxation and 
constant cross-head displacement-rate techniques. 

When specimens underwent crack jumping, the 
crack velocity was estimated using a modification 
of the load relaxation method, described by 
Phillips and Scott [5]. 

In all cases a correction factor was used to take 
into account the curved profde of the crack front 
[1 ,2] .  

3. Results and discussion 
3.1. Young's modulus 
The variation of modulus with strain-rate for each 
of the composites is given in Fig. 2. It can be seen 

10 6 10 -s 10 -~ @ sec -1 10-3 

E GNm -2 ~ -~ ~ S -" A ~ 0.52 

- - ~  ~ ~ �9 - -  A 0.47 

�9 0.42 

�9 ~ o.35 

-- v �9 ~ ~ ~. ~, r 0.26 

0 
, y mm rain -~, 

0b l  0.1 1 0 10 

Figure 2 Variation of the Young's modulus of the com- 
posite, measured in bending, with cross-head speed and 
strain-rate. Each curve corresponds to a different volume 
fraction of particles. 
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that the modulus increases significantly with 
volume fraction of particles and increases only 
slightly with loading rate. Fig. 3 shows the vari- 
ation of modulus with particle volume fraction for 
a particular strain-rate (10-4sec-1). The broken 

2~ I J E GNpq -2 / 

16 / �9 

12 / �9 
/ 

/ 

Vp 

01 012 0.3 0'4 0.5 0.'6 

Figure 3 Variation of the Young's modulus of the com- 
posite with volume fraction of particles Vp measured at a 
strain-rate of 10 -4 see -1 . The two broken fines axe from 
Equations 4 and 5 and the continuous lines from 
Equations 6 and 7 respectively. 

curves in this figure are the' predicted upper and 
lower bounds of modulus of a particulate com- 
posite using a model due to Paul [6] and based 
upon strain energy theorems. The upper bound is 
given by 

Ee = EpEml[(1  -- Vp)Ep + VpEm] (4) 

and assumes that the particles and matrix are 
equally stressed. Ee, E m and Ep are the values of 
Young's modulus of the composite, matrix and 
particles respectively and Vp is the volume frac- 
tion of the particles. The lower bound is given by 
the simple rule of mixtures equation: 

E c = (1 -- V p ) e m  + Vpep (5) 

Em has been taken to be 3.16GNm -2 and Ep to 
be 73.1 GNm -2 [7]. The two bounds are widely 
spaced and the experimental points lie well within 
them. 

A better theoretical estimate can be obtained 
using the equations of Ishai and Cohen [8] which 
are based on the work of Paul [6]. The model is 
that of a cubic particle surrounded by a cube of 

matrix. The upper bound of E e which in this case 
is for a uniform stress applied at the boundary of 
the cube, is given by 

1 + (m-- 1)V /3 ] 
= E,,,, a + (m V ,)J (6) 

where m is equal to Ep/Em.  The lower bound is 
found using the same model [8] and is for uni- 
form displacement at the boundary. It is given by 

Ec = Em 14 [ m ( m - - 1 ) - -  V 1/31 " (7) 

The bounds given by Equations 6 and 7 are much 
closer together and they are drawn as solid lines in 
Fig. 3. The experimental points lie between these 
bounds up to a particle volume fraction of 0.4 but 
they tend to rise above the upper bound at higher 
volume fractions. Particle strengthening of an 
epoxy resin has been observed by Ishai and Cohen 
[8] in tension and compression. The deviation 
from the theoretical prediction at high volume 
fractions observed by Ishai and Cohen [8] and 
ourselves, is probably due to the particles becoming 
in contact with one another and without a continu- 
ous layer of matrix between them. 

Radford [9] has fitted the modulus particle 
volume fraction data of similar particulate c o r n -  
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Figure 4 True stress versus nominal strain measured in 
compression at an initial strain rate of 8 X 10 -4 sec -1 for 
samples of the composite. A 1% offset yield stress is 
marked upon each of the curves. 
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posites to an empirical equation. The data ob- 
tained in this investigation for any given strain-rate 
may be fitted to a similar equation. In this case the 
Young's modulus is given by 

Ee = Era(1 -- Vp) -7/3. (8) 

Although the data fit the equation very accu- 
rately, the physical significance is unclear. 

3.2. S t r e s s - s t r a i n  behav iou r  
Stress-strain curves for each of ttae composites are 
given in Fig. 4. All the samples yielded and flowed 
in uniaxial compression in contrast to their brittle 
nature in tension. The pure epoxy resin and com- 
posites having low values of Vp were able to flow 
to over 30% plastic strain before cracking. This 
ability to undergo plastic flow decreased as V o was 
increased and for the highest particle volume frac- 
tion studied (V o = 0.52) fracture occurred soon 
after the specimen had reached the maximum load. 
All the silica-filled composites were seen to stress- 
whiten after yield. Fig. 5 shows a pair of optical 
micrographs of sections of specimens with Vp 
equal to 0.52. The surface of an undeformed 
specimen is shown in Fig. 5a and that of a de- 
formed specimen is shown in Fig. 5b. It can be 
seen that after deformation the specimen con- 
tains many particles with cracks parallel to tile 
compression direction. The cracks may be caused 
by tensile strains perpendicular to the compression 

direction induced by the compressive stress. 
The yield point for these composite materials is 

difficult to define. In the stress-strain curves 
which show a drop in true stress after yield, the 
maximum stress can be taken as the yield stress. 
However, all the CUlVes do not show a load drop 
and a 1% off-set stress has been taken to define 
the yield stress. 

For a given size of particle, the average separ- 
ation between particles decreases as the value of 
Vp is increased. The inter-particle spacing, d, can 
be estimated from the equation [10] 

2D(1 -- Vp) 
d -  , (9) 3vp 

where D is the average particle size. T h e  yield 
stress of each of the composites is plotted against 
the reciprocal of  the average inter-particle spacing 
in Fig. 6. The points are scattered but it does 
appear that the yield stress of the composite %~ 
can be described by an equation of the form 

S 
Oy e = Oy m -1-~  (10 )  

where Oym is the yield stress of the matrix and S 
is a constant that is equal to 3.4 x 10 -3 MNm -1 . 
A relationship similar to the one described in 
Equation 10 has been successful in estimating the 
yield stress of precipitation hardened metals [11 ]. 

Some preliminary experiments have also been 

Figure 5 Optical micrographs of polished sections of the composite material containing 0.52 by volume of silica 
particles: (a) undeformed; (b) after being taken tO a compressive strain of 0.12. Arrow indicates compression direction. 
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carried out to study the effect of  strain-rate upon 
the yield stress of  these composites. The stress-  
strain data given here are subject to a scatter of  
-+ 5%, but it does appear that the yield stress 
increases with strain-rate. 

200 1[)0 65 5'0 A'O 
200 d ~m 
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Figure 6 Yield stress as a function of the reciprocal of the 
interparticle spacing iv. the composite (Table I). 

3.3. V (K) measurements 
The curves showing the relationships between V 
and K I for pure epoxy resin and si l ica-epoxy 
composites are given in Fig. 7. The experimental 
points have been omitted although V(K) curves 
with experimental points have been published for 
the pure resin [12] and composite containing 
42% silica [1].  The amount of  scatter of  data 
obtained in this earlier work is typical of  that 
found in the present investigation. The curves 
have been plotted between crack velocities o f  
10 -8 and 10 -2 msec -1. Data over this range of  

velocity were not obtained for all samples and in 
these cases the curves have been extrapolated to 
cover the full range of  crack velocity. It can be 
seen in Fig. 7 that the value of  KI associated with 
a particular crack velocity increases with the 
volume fraction of  silica particles. Crack jumping 
tended to occur in the DT specimens containing 
lower volume fractions of  silica (0 and 0.15). In 
contrast, crack propagation occurred in a more 
continuous stable manner with higher volume 
fractions of  particles. 

4. Crack propagation 
4.1.  F r a c t u r e  ene rgy  
From a fracture mechanics point o f  view, crack 
propagation in the composite becomes more 
difficult as the volume fraction of  silica particles 
is increased. However, a rather different picture 
emerges when the fracture energy is considered. 
The strain energy release rate G I is related to both 
KI and E and is given [13] approximately by the 
equation 

GI ~K~/E. (11) 

The exact value of  G I will depend upon the 
crack velocity at which KI was determined and the 
strain-rate at which E was measured. The crack 
velocity and strain-rate should be related [14] but 
the relationship between the two depends upon 
the nature of  the plastic zone at the tip of  the 
crack. A strain-rate of  10 -4 sec-* and a crack 
velocity of  10 -5 m sec -1 have, therefore, been 
chosen arbitrarily. The value of  GI(K{/E) calcu- 
lated from Equation 11 has been given for each 
specimen in Table III. In contrast to KI, GI 
reaches a maximum at a volume fraction of  about 
0.3 and then falls off. This is because the modulus 
E increases with volume fraction at a faster rate 
than the increase in K~. 
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Figure 7 Crack velocity (V) as a function of 
stress intensity factor (KI) for the composites 
tested in air. Data points have been obtained 
for the continuous lines. The broken lines are 
extrapolations of the continuous lines where no 
data points are available. 
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T A B L E  III  The variation o f  ay,  KI,  E and K}]E with 
volume fraction o f  particles in the  composi te  Vp 

Vp oy KI E Ki]E 
( M N m  -2 ) (MNrn - s n )  ( G N m  -2 ) ( J m  -2) 

0 84 0.644 3.16 131.2 
0.15 104 1.228 4.62 326.4 
0.26 109" 1.800 6.31 513.5 
0.35 116 2.089 8.32 524.5 
0.42 131 2.203 10.96 442.8 
0.47 140 2.317 13.80 389.0 
0.52 172 2.636 16.25 427.6 

, y  has been determined at a strain-rate o f  8 X 10 -4 sec -1 , 
K I is given for a crack velocity o f  10 -s m s e c  -t and E is 
given for a strain-rate o f  10 -4 sec -1 . 
*Extrapolated value. 

It has been suggested that the fracture energy 
of brittle materials reinforced with brittle second 
phase particles may increase as the inter-particle 
distance is decreased due to a line energy effect 
associated with crack-front particle interaction 
[15]. Equation 9 shows that the inter-particle 
spacing will decrease as the volume fraction of 
particles is increased. Lange [t5] suggested that 
the relationship between GI and d would be of the 
form T 

G~ = G~' + d  ' (12) 

where G~ is the strain energy release rate of the 
pure resin and Gf is the strain energy release rate 
of the composite with an inter-particle spacing of 
d. T is the line energy of the crack front. Fig. 8 is a 
plot o fK~/E  against 1/d for the various composites 
tested. K]/E increases linearly as the inter-particle 
spacing is reduced, until about 150#m, (Vp 
0.25) as implied by Equation 12 giving a value of 
T of 0.05 Jm -I . At spacings below this value the 

500 ,.21200 1 0 0 6 5  504 . 40 
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Figure 8 K~/E or GI as a func t ion  o f  the  reciprocal o f  the  
interparticle spacing (Table I). 
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equation no longer holds and a further increase in 
K~/E (or GI) that is predicted does not occur. The 
reason for this is unclear, There is some evidence 
that in epoxy composite systems the mode of frac- 
ture may change as the particles become too close 
for an effective crack front interaction [10]. It is 
known that the mode of fracture in these materials 
may change with crack velocity also [1]. The 
mechanisms of failure in these materials have been 
discussed in detail in a previous publication [1], 
and this is clearly an area where more investigations 
are needed. 

This maximum in GI at a critical value of d (or 
l/d) may be accounted for by an alternative 
explanation. If the formation of a crack in a par- 
ticulate composite requires a critical amount of 
stored elastic strain energy within the particles and 
the surrounding matrix, (as suggested by Davidge 
and Green [17] ), then this pre-requisite for crack- 
ing must, therefore, be dependent upon Vp. 
Davidge and Green showed that for thoria spheres 
in a glass matrix most of the stored elastic strain 
energy in the matrix was in a shell of thickness 
D/2 around the particles. Since one assumption of 
their model is that the strain energy field of an 
individual particle is not interfered with by an 
overlapping field, then for this to happen the 
interparticle separation d must be equal to greater 
than the particle diameter D. For our silica particle 
epoxy resin composites this would correspond to 
an inter-particle separation of 70pro. The maxi- 
mum in the plot of GI against 1/d occurs at a value 
of d of the order of 100tam (Vp ~0 .3 )  and so it 
may be that at high values of Vp the strain fields 
overlap and there is no further particle toughening. 

One important point to note for failure-safe 
design purposes is that it is the value of Ki that is 
important rather than that of G I. The fracture 
stress of of a specimen containing a small flaw or 
crack of length a may be given by a Griffith type 
relationship such as 

~ (GIcE) in Kic (13) 
of ~--~a / x/(~ra)' 

where Gic and Kic are the values of G I and KI 
required to produce catastrophic failure. This 
means for a given crack length or flaw size the 
fracture stress will be higher if K]c is higher for 
that material. The value of fracture stress will 
also depend upon the product of Gic and E. 
Anything which increases or decreases GIC may 



also change E and so changes in both of these 
parameters must be considered for predictions 
of  fracture stress. 

4.2. Plastic zone 
In the absence of any direct observations of  the 
crack tip during crack propagation this section can 
only be speculative. However, enough information 
has been obtained to enable the crack opening 
displacement and plastic zone size to be deter- 
mined if the plastic zone at the tip of  the crack is 
assumed to be of a certain geometry. 

It has been shown [14] that in polymers such 
as PMMA the plastic zone at the tip of the crack 
may be modelled successfully as a Dugdale line 
plastic zone. In this case the length R of  the plastic 
zone is given by [14] 

R 8 \Oy/ 

and the crack opening displacement 6 t is given by 
[14] 

KI 2 
= ( 1 5 )  

oyE 

The values of  R and 6 t have been calculated using 
the experimentally determined values o fKi ,  E and 
ay (from Table III) and are given in Fig. 9 as a 
function of volume fraction. The exact values of  R 
and 6t will depend upon the crack velocity and 
strain-rate chosen. However, both R and ~i t 
increase at first and then reach a maximum at a 
particle volume fraction of the order of  0.3. There 
is no evidence that in epoxy resins or epoxy resin 
composites that the plastic zone is of  the Dugdale 
type. Indeed if the plastic zone in the pure resin 
were a craze of length 23 #m as the Dugdale model 
implies, it would certainly be visible to the naked 
eye which does not appear to be the case. Also it is 
difficult to define what is meant by a plastic zone 
in a composite material and it is also likely that 
the geometry of any plastic zone might change as 
the volume fraction of  particles is altered. 

If  the material contains a plane strain plastic 
zone the values of  R and 6t can again be calcu- 
lated. In this case they are given by [16] 

1 (K-j-It z (16) 
R = 3rr \ o y /  

and 
K? 

6, "" 0.5 - -  (17) 
a y e  ' 

and are smaller than the values given by the 
Dugdale model. However, they differ from the 
Dugdale values by a constant factor and are given 
by the right-hand ordinate in Fig. 9. The maxima 
in R and 6 t at a volume fraction of 0.3 are con- 
sistent with the maximum in GI (K~/E) at a 
similar composition. 
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Figure 9 Plastic zone size (R) and crack opening displace- 
ments (~t) as a function of the volume fraction of par- 
ticles Vp. The axis in the left-hand side refers to the 
values given by the Dugdale model and the axis on the 
right-hand side is for the values obtained for a plane strain 
plastic zone. 

5. Conclusions 
It has been shown that the addition of silica par- 
ticle to an epoxy resin can have a profound effect 
upon the mechanical properties. The Young's 
modulus measured in bending and the yield stress 
measured in compression are both increased. It has 
been found that under identical experimental con- 
ditions for each of  the composites investigated the 
crack velocity (F) is a unique function of the 
stress intensity factory (KI) and for a given crack 
velocity the stress intensity factor increases 
markedly with the volume fraction of the second 
phase particles. 

Various other fracture mechanics parameters 
have been calculated for the system. It is found 
that the strain energy release rate (GI), crack 
opening displacement (6t) and plastic zone size 
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(R) increase at first with increasing volume frac- 

t ion of particles. They all reach a maximum at a 
k, olume fraction of  about 0.3 and then decrease at 
higher volume fractions. However, the volume 

fraction that gives these maxima cannot be said to 
be the opt imum composition. The fraction stress 

varies with inherent flaw size and is dependent 

upon K I rather than any of these other fracture 
mechanics parameters. For complete knowledge 

of the failure behaviour of these materials the 

crack initiation processes and variation of 

inherent flaw size with composition would have 

to be evaluated. 
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